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Motions of conservative systems which, In a certain sense, generalize the 
precessional and nutatlonal motions of gyroscopes, are Investigated. Fairly 
simple conditions of stability of precessional motions In terms of all velo- 
cities and of noncycllc coordinate, are obtained. These conditions are, as 
a rule, necessary and sufficient. In one particular case, they are reduced 
to well known conditions of stability for the gyroscopes with a vertical 
external suspension. The Instability of the system Is estimated In terms 
of cyclic coordinates and of the vector of mean deviation of the system from 
nonpe?turbed precession during the period of one nutatlonal oscillation 
(Magnus type time drift). 

1. Let a conservative system with n + 1 degrees of freedom (n 2 1) 

possess generalized coordinates al,..., an, t? , where B Is the noncycllc 

coordinate, while the remaining ones are cyclic. Then, the kinetic potential 

will be 

L (ai, 1 . .) a,‘, fJ aij (p) afaj’ + p’ B ai (P) ai’ + + b (p) P’” - 1-I (p) 
i, +I i=l 

where II(B) Is the potential energy of the system. Symmetric matrices 

. . . , arm, a, I ’ 

. . . , a,, b / 

B(p)= . . , . . . . II ad, . . . , arm 

are posj.tlve-dkfinlte (In the sense of the corresponding quadratic forms) 

over some Interval of variation of B . We assume that the functions a,,(B), 

a, (B), b(B), n(e) are continuous and possess derivatives of any order. 

Let C(B) be the Inverse of 8 , I.e. C = B' and let us Introduce 

n-dimensional vectors a = (a,, . , . , a,), a = (al’, . . . , a,'). Then, the 

kinetic potential becomes 

L(a’, p’, p)= I/? (Bx’, 01’) + p’ (a, a-) + ‘/a bv2 - II (p) 
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where (x, y) is the scalar product of the vectors x and y . 

Let us now consider the motion with initial conditions eO, Boa, ac' ; 

In the following, A,,, Bo, . . . . a0 and b, will denote values of the func- 

tions of !3 , when 6 - B. . 

Lagrange!s equations yield n first integrals 

Ba'+B'a = A = Z&a; + Po'a,, (W 

and the energy Integral 

f/a(Ba', a') + S'(a, a') + l/SW2 + JJ (P) = '12 a = 

=1/2(&%~t Gl.) + Po'( ao, a,') +1/2UV + % 

From (1.1) we have 

(1.2) 

u*=B-l(A-_~'a)= CA-P’Ca (1.3) 
and the energy Integral becomes 

'1s (A--'a, CA--P'Ca)+ P'(a, CA- P'Cu) + l/z bp’2+ rI (p) = 

= l/2 lb - Vu, a)1 p’” + l/z (CA, A) + JI (P) = '12 e 

Let (A ( and IpI be the determinants of the matrices A and B . Since 

1~1 > 0 and IsI > 0 , It is easy to see that 

b - (Cu, a) = j$-/ >o 

After Introducing the notations 

h (l-9 f g I cP(h A) = (CA, A)+ 2II(p) 

the energy Integral assumes the form 

h(@P'2+ cp(B, A) = a = k,,p,'2 i- cp(P,,, A) (1.4) 
In the following, differentiation with respect to a will be denoted by 

a prime; thus h'(2) , cp'(B, A) , C’ etc. Then, the Routh equation of 

motion will be 
2W)B"f hXW2+ cp'(Bt A) = 0 

If the Initial values of eo, 6; = 0 and ad are such that 

'p' (Be, A) = 0, for (C,'A, A) + 2ll,' = 0 (1.5) 
then the motion of the type @ a Bo, a'= const exists, and we shall call 

It, In conformity with gyroscoplc terminology, the precession. For the pre- 

cession we have, from (l-3), a'= a.d = CoA . 

2. Let us consider a line E = ~(6, A) and a horizontal straight line 

2-c where A and E are defined In terms of some arbitrary Initial con- 

ditions ao, &,' and co, on the plane with rectangular coordinates (2, z) 

where s is the horizontal and z is the vertical axis. By (1.4), we 

always have rp(Bo, A) 5 c . cp(~~, A) = e if and only If ad = 0 (since 

ho >O) . If Bo’ f 0 , then on some interval containing so , the inequality 

V(B, A) < c holds. Now let us assume, that between the lines .? = c and 

2 = (p(B, A) , POlntS 81 and 82 exist such, that ~p(@~,A)=c, cp(@,,A) = c 

and cp(s, A) < E for e,< s < Ba . It is easily seen that, if the line 
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z =*B intersects the curve z = vp[$, A) at two distinct points pi and %% 

[i.e. t~'f%ltd) < 0 and (P'~z, A) > 0) , then the Routh equation has a peri- 
odic soluti#n, and its period 

assumes a31 possible values between B1 and Bz _ By (1.3) is also a peri- 
odic function of time t , and has the same period Z' _ We shall call the 

above motion nutational. 

In case of nutatlonal motion, function %I(%, A) has at least one minimum 

in the Interval &< % < flo . The nut&ion will be called proper nutation 

if &, A) has exactly one minimum. In this ease the minimum point will be 

called the center of nut&ion, and denoted by %+ I Obviously, rp'(%,,Af - 0, 

hence % 9 %+, while d = cf%,)A will be 8 precession correapondbg to the 

center of nutation. 

Let us now represent (1.3) and (1.4), as 

while the period 2' 1% given by (2-l), in which E - q3($, A) 1% replaced by 

v=- 14pk53 A) -q&k, &II l Let us now detwn&ne the increment oi' the vector 
a.* f crJ +.., a.) dur&g one period of nut&ion. Integrating (2.2) with 

respect to 5 and replacing the variable t by % , we find 

@+TC(P )A 
4 

since the integral of f8’c4 over one complete period, v%nf%hes. 

Mean increment of vector c per one period 

)/hoWW-C(P+W 
I/va- [VIP+ A)-- ‘PIP+* 41 

@+c(p )A 

+ (2.4) 

The center %+ of nutation is a root of 11.5) and depend% 63~0~ on the 

choice of A . Integral kn (2.4) depends on A and Va . Let u% denote 

It by *(s", A) . TBen we can represent (2.4) as 

<a") = Q, (9, A) $ C @+@))A W3 

An approximate expresalon for Q(v", A) for small v &nd fixed A will 

be @ven later, while now we shall consider the stability of precession. 

3. From (1.5) it follows that, for the precession % - &,, a*- &A , 

the curve ,e = cp(%, A) has a horizontal tangent at the point B - B. . Iffp 
at the same time 

cp" @ok 4 > 0, for (Co”A,A) + 2X4,” > 0 (34 
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is fulfilled (I.e. If B0 is the minlmum point of ~(6, A)), then the preces- 

sion is stable In B and a. . This easily follows from the assumption of 

cont:nuity of u,,, as, b and ll and of their derivatives as functions of 

B , and from the conditions (1.5) and (3.1). If rp'(B, A) c 0 , then the 

precession is unstable. The case q"(BO, A ) = 0 shall not be considered. 

Let us now assume that B0 and A satisfy (1.5) and (3.1). Then, the 

corresponding precession is stable in B and a', although as a rule, it is 

not stable in a . The latter follows from (2.5). Delow we shall show, that 

@(v" * A) differs, as a rule, from the null-vector, hence some of its terms 
are different from zero. This means that the value of the corresponding 

coordinate a, departs systematically from its precessional value. Later we 

shall obtain a quantitative estimate of this Instability for various types 

of perturbations, while now we shall give some examples of application of 

Formulas (1.5) and (3.1). 

4, Examples , Let us consider a gyroscope on gimbals with a ver- 
tical axis of the outer frame. We shall also consider gyroscopes with inter- 
secting or crossing frame axes, where the center of gravity of the gyroscope 
is displaced downward along the axis of the rotor. We shall denote by .a1 
the angle of rotation of the outer frame, sz will be the angle of rotation 
of the rotor and B will be the angle of rotation of the inner frame. We 
;;;ze B(B) = mQI, sin B where m is the mass of the rotor with the inner 

and I is the displacement of the combined center of gravity of the 
rotor'and the inner frame, along the axis of the rotor. Kinetic energy of 
the gyroscope Is given by 

Ml (f3) = p1 + q1 cos 28 -- rl sin 28 - s1 cosfi, N, @) = D, cosfi + K, sin fi 

Here I%, @I r1t s1 1) X1 and I are various moments of inertia (axial 
and centrifugal) of the f&&es, rotor and their linear combinations, while 
J is the axial moment of the rotor. For heavy gyroscope on gimbals rI=q=O, 
for a gyroscope with Intersecting axes sl- 0 , while for the gyroscope in 
which the combined center of gravity of the rotor and the inner frame is not 
displaced with respect to the axis of the rotation of the inner ring, we 
have t-0, 

First integrals of motion have the form 
A1 = Ml(p) al’ + J(ue’+ al'sin /3)sin P--Nl@)P 

Hence A,=J(a,'-i al'sin 6)~ JQ (Ml(P)>O) 
un = M, (p) + J sin* p, all = at1 = J sin fl, aoa = J, a, = - NI (@,I, (1$= 0, b = 1 

We assume that M,(B) > 0 for all values of B . We easily obtain 

Disregarding the uninteresting case R - 0 , we shall assume R # 0 . Let 
us Introduce the dimensionless parameters 

and functions 
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Then, we shall have 
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rp@, A)=JQa I I+ 
(sin fi - A)2 

M.(B) 
+psinP I 

In the following, instead of the minimum of cpfs, A), we shall try to 
obtain the minimum of 

where 
$c)(8, A) = 

(sinP-A)2 

M (P) + P sin P 

A 
Al =---= Ml (8) 011’ + JQ sin p - &I (8) P 

A2 Js1 
= sin p + o&i (/3) - A: (p) $ 

(4.1) 

Ccneequently, if the Initial condition Is such that so’ - 0 , we have 

A = sin&f Mea (4.2) 

Differentiating (4.1), we obtain 

$‘(P, A) = 
2(sinp-A)cosp (sin j3 - A)“M’ (p) -- 

M (8) M2 (P) 
-t F cos P 

Replacing 6 with so , taking (4.2) into account and equating the result- 
ing expression to zero, we obtain the equation for cu, , the angular velocity 
of precession of the outer frame. We have 

& - ti,) cos #$, - M,,'oo2 = 0 (4.3) 

Thls quadratic equation has real roots, if 

For a heavy gyroscope 

hence (4.3) is satisfied 
arbitrary precessiona of 

cos2 PO + PM,’ cos p. > 0 (4.4) 

(r = 8 - 0), we have 

MO = - 4q sin PO co9 PO 

at shy value of uro , if so- f *n (existence of 
a heavy gyroscope with folded frames). We have 

2 CO.+ @ 
V (I% A) = ygqj- - 

2 (sin p - A) sin fi 4 (sin j3 - A) cos PM’ (3) _ - 
M (8) Ma (Pf 

_ (sin p - A)2 M" (8) 
M'(P) 

+2 WP- Al2 [M' WI2 
M(P) 

- p sin p 

’ Ae:suming that B = B. in +“(e, A) utilizing the relation (4.2) and 
replacing according to (4 -3) ~UOCOS Co ‘by p co8 so- no ‘mo2, we obtain the 
following condition of stabll1t.y 

%f,-’ (cos2 PO $- p M,' cos 6,) f [(Zoo - p) sin &, - M,“w,~] > 0 (4.5) 

while: the condition that the precession 8 = Cot ul= ru, ) ia unstable, is 

2Mo-’ (c0s2& -4 p M,’ ~0s &J + [(20, - p) sin PO - Mi’m$] < 0 (4.6) 
from which we see that stability la Independent of N(6) . 

Let us mention few particular cases. 

I) Since iyo> O , by (4.4) the condition (4.5) is fulfilled if 

(2% - P) sin PO - M,“oo2 > 0 

This sufficient condition of stability was obtained by Slnlteln Cl]. 
2) For a heavy gyroscope we have 

.‘M, = P + ‘/ COS Z&J = (p + q) - 2q sin’ PO, M,’ = -4q sin PO cos PO 

M,” = - 4q cos zp, 

Assuming 60 # f fin we find from (4.3) that p - *- JQ sin some* . Sub- 
stituting this into (4.5), multiplying the result by Ho and dividing it by 
2 cosaao , we shall obtain the condition of stability of precession of a 
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heavy gyroscope which was previously found by Skimel' [2]. In our notation 
It has the form 

1-68r100sinB,+2qo,2(p+q+6qsin2B,)>0 
For &= f an we have 

MO= Pi q, MO’ = - 4q cos&, sinh = 0, M<' = 4 Q 

The condition of stability *(2~,,- p) - 4gwo2> 0 
, - sign for &= - &f) was found previously by Rumlan- 

3) If 2r f 8 # 0 
fulfilled we find from f 

then N'(* &r) # 0 . Assuming the last condition 
4.3) that, when so - f & ,then cue- 0 Hence the 

precession so - f *n , UJ~= 0 1s stable for F p > 0 , and unstible for 
ip<o. 

4) Let go be such, that No'= 0 . Then IJJ~- &A and the precession 
UJ - & Is stable If No"< 0 (assumlng that p # 0) , I.e. If PO 

!s'tk &mum of N(e) . 
5) Let p - 0 (gyroblock Is In static equlllbrlum with respect to Its 

axle of rotation). Then, one of the roots of (4.3) 1s equal to zero: UJ~- 0. 
From (4.5) we find that the precession g = so , ILI~- 0 Is stable for 
Bofi an . 

In the above samples we have considered the stability with respect to 
angular velocities of the rotor, of the outer and inner frame and with 
respect to the angle of rotation of the inner frame. We know that even the 
precebslon of the example 5) Is unstable with respect to the angle of rota- 
tion of the outer frame. t l&gnus type time drift). Let us now return to 
the quantitative estimate of the mean drift of a1 per one period of nuta- 
tlonal oscillation, defined by (2.5). 

5. Let go and A be such, that the conditions (1.5) and (3.1) are 

satisfied. Then, for sufficiently small l&l , the Initial conditions 

B =Po, d = Co (A - Pda,,), B’ = PO 

result ln a proper nutatlon with Its center at B. . Let us find the first 

term of the expansion of @($, A) In powers of 3. To do this, we shall 

introduce ln the integrals (2.1) and (2.4) a new variable of integration u, 

aasumlng that 
B = B (u) = l/a (Pa + B1) + l/z @!a - L) sinu 

where g1 and sa are roots of (2.3). 

In the following we shall denote by O(V) and O(V, u) functions (vectors 

or matrices the components of which are functions) defined and uniformly 

bounded on the Interval IVI s 6 or in the rectangle Iv1 5 6 ,luls ti , 
respectively, where 6 > 0 1s a sufficiently small number. 

Let us represent (2.3) In the .form 

l/n 9s" (8 - Ma + %(P,," (P - Bc)s + k (8 (B - 80)~ = y2 

where k(e) la a function bounded ln the vicinity of the point s-so. 

Then, we easily find 

PI = so- clvl +d@+v30(v) 

& = PO + c I v I + dv2 + ~‘0 (9 
(c=($)“, d= -*) (5.1) 

and 

B(u) = PO + c Iv I sin u + dya + 90 (v, U) (5.2) 

Consequently, we have for an arbitrary function Y(s) 
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f #J (u)) = f. + fO’c Iv 1 sin u + (dfo’ + 1/2 cafe” sin2 u)v2 + vsO(v, u) (5.3) 

By (1.5) and (2.3) we can show, that for the function cp(g, A) , 

v2- IT (P, A) - cp (PO, A)1 = [1+ s 1 v 1 sin u + v20 (Y, u)]v2ws2u 
from which 

1 v 1 cos u 

If+-FP@&---(P @o.Al =’ 
-~~vlsin~+v20(~, 24) (5.4) 

follows. 

After the change of variable In (2.1) and (2.4), new lntegrand functions 

will, utilizing (5.3) for m and (Cg) and (5.4). for (p(e, A) , be in the 

integral (2.1) PB--p1 I Y) cos u vi; 
2lvl J&zppg= 

=(c+v~(v))[yr~+ivIC(~-~)sinui-vzO(v,~)] 

and In the Integral (2.4) 

Pa - Pl 1 v 1 co.5 u 

2lvl p+---‘p+qAJ 
v”K(C - C,) = .(c + v20 (*)) (1 v f JfQ& CO’e sin TV + 

+ v2 c2cot 
[ ( 

‘ho cpo” ~ - - 
2 00 MO” 1 

sina u + 

-F_ jf& (&Jo’ + f Co” sin2 ~)] + 90 (Y, 82)) 

Since the Integral of sin u , slnau and 1 Is, over the Interval 

- & i u i & , equal to 0 , &n and n, respectively, we can easily 

obtain, utilizing (5.1), 

T@ (V2, A) = 22% (&)“’ jh,, (5 1 ej + +$m (h; _ !8f_$?)] ,$A + A No” )2 I 

+ V30 (“1 = Z ( &)‘” (+); A@ + $0 (v) (5.5) 

It can also be easily shown, that the last term can be replaced by 

30(v). Hence, we have 

~(v~,A~=~(~~~A+v~O (v)= ~(~)~A+~~~O(p~*) 
0 

Here g.,' Is the rate of nutation at the instant of crossing the center 

of nutation. By (2.5), we have 

(a*) = C~A+~~~2(~j~ A+~~~O(~~) (5.6) 

Let us use (5.6) to find the drift of the external frame of the gyroscope 

In static equilibrium with respect to its axis (8 = ~1 = 0) . In this c&e 

we have the precession B - go , UJ~- 0 . Using the notation of Section 4 

we find, by (5.6), 
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(ccl’) = 

=- 02 P’ 
I [2(p - q) sin pO-- (2 + s sin pO)cos b]-JNO(K + N~sinb) 

$JQMo cos2 p0 + Pi”0 oh7 

When rrsrD=K=O, we have the known Magnus approximate formula 

for the drift of external frame. 

6. Let pl and the vector A(l) satisfy the conditions (1.5) and (3.1). 

Then the stable precession B = IL a' 5 a'(l) = C (#&)A"' exists. tit $2 
snd. A(2) be an arbitrary nunlber and vector, respectively, such, that ]B~--B~ 1 
and 1 A(2) - L\(l) 1 are sufficiently small, and let a,' be also sufficiently 

small. Then the motion with Initial condltlons 82 , A(2) and Bz' will be 

a proper nutatlon, the center of which we shall denote by &, . The rate. 

&,' of this nutatlon at the instant of crossing the center of nutation, can 

be found from 

and it can be shown that &,*' Is a second order lnflni.teslmal with respect 

to //&‘I + IB2 - fJ1 [ + 1 At21 - A(I) 1’. 

Let us now find the vector of mean deviation (LX' - al’>. By (5.6) we have 

(a’ _ a’(l)) = CoAt2) -C (pl) A(l) + ; /30m2 ($); A(') + pi40 @,‘) (6.1) 

Let us estimate C,AU) - C (&) A(*). Putting 5 = A(z) - A(l), we 
shall note that 

cp (fi, A(a)) = (CA(z), A(2)) + 2II @) = (C (A(l) + i$), A(l) + E) + 

+ i9-1 (B) = cp (B, A(l)) + 2 (CA(l), E) -I- (CL E) 

Hence, by (1.5) we can find the center of nutation using 

cp’ (PO, A(l)) + 2 (C&W Ez) f (C,‘E, E) = 0 
For small Is] this equation has, by virtue of cp' (PI, A(1)) = 0 a solu- 

tion 

PO = l-h- 
2 (C’ (PI) A(? t) 

w” (PI, A(l)) + I E 1’ 0 (i E I) 
Hence, 

cod” - c (PI) A(l) = (c (PI) + C’ (PI) (PI - Po) + 1 E I2 0 (1 E I)) (A(l) + j) - 

From this we see, that, If 1 E /, / b2 - pll and 8.2 are of the same order 

of magnitude, then C,A(*) - C (&)LW , will be the principal term of (5.7) 

and we shall have 
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If 5 = 0, I.e. A\(2) = A(l), &, = fll ( center of nutatlon coincides with 

the Initial point B1), then the following approximate formula can be used: 

(a’ - c(‘W) ==: ___ A(1) 

v2 z h (P2) pia + ; ‘P” (PI, A(‘)) (P2 - W) 
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