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Motions of conservative systems which, 1n a certain sense, generallze the
precessional and nutational motions of gyroscopes, are investigated. Falrly
simple conditlions of stability cf precessional motions in terms of all velo-
cities and of noncyclic coordinate, are obtained. These condltions are, as
a rule, necessary and sufficient. In one particular case, they are reduced
to well known conditions of stability for the gyroscopes with a vertical
external suspension. The instability of the system 1s estimated 1n terms

of cyelic coordinates and of the vector of mean deviation of the system from
nonperturbed precession during the perlod of one nutational oscillation
(Magnus type time drift).

1. lLet a conservative system with n + 1 degrees of freedom (n 2 1)
possess generalized coordinates q;,...5, ans B , Where 8 1s the noncyclic
coordinate, while the remaining ones are cyclic. Then, the kinetic potential

will be
n

n
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where Ti(B) is the potential energy of the system. Symmetric matrices
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are positive-diéfinite {in the sense of the corresponding quadratic forms)
over some interval of variation of 8 . We assume that the functions au(eL
a, (8), b(p), n(g) are contlnuous and possess derivatives of any order.

Let ¢(8) be the inverse of g , i.e. ¢ = g~! and let us introduce
n-dimensional vectors a= (a;, ..., @), & = (&}, ..., @y). Then, the
kinetlc potential becomes

L, By 3)= 12 (B, &) + B (a, &) + /252 — 1 (B)
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where (x, y) 1s the scalar product of the vectors x and y

Let us now consider the motion with initial conditions Bo, Bo®, Qo° ;
in the following, Ao, Bo, -.-., 8o and D, will denote values of the func-
tions of B , when B = By .

Lagrange's equations yleld »n filrst integrals
Ba' +@a = A = By’ + Br'a, (1.1)

and the energy integral

Ya(Ba', &) 4B (a, o) + /2 BB + I (B) = Yo & =
= /5 (Bydlg’, %g’) + Bo (@0, otg’) 4 /2 beBo 4~ 1o (1:2)
From (1.1) we have
o =B1A—Ba)=CA—pBCa (1.3)

and the energy integral becomes

/(A ~Ba, CA—PCa) + B (2, CA—BCa) + o b3 4 T (B) =
=2 [b—(Ca, )1 B>+ Y/2(CA, A) + T1(B) =&

Let |4]| and |R| be the determinants of the matrices 4 and B . Since
]Ja] > 0 and |B| > 0, it 1is easy to see that
b——(ca,a):.l.ﬁ>0
| B1
After introducing the notations
— 14]
h®) = 157 @ (B, A) = (CA, A) + 211 (8)

the energy integral assumes the form

RB)B2+ (B, A) = & = hoBy + @ By, A) (1.4)
In the following, differentiation with respect to B will be denoted by
a prime; thus h'(B) , @'(g, 8) , ¢’ etc. Then, the Routh equation of

motion will be % (B) B + W (B) B.z + (P' (B, A) =0

If the initial values of 84, 8¢ = O and qo are such that
9 (Boy A) =0, for  (Cy'A, A)+ 20, =0 (1.5)
then the motion of the type B = By, a'= const exists, and we shall call

it, in conformity with gyroscopic terminology, the precession. For the pre-
cession we have, from (1.3), a'= ac = Cod

2. Let us consider a line =z = (g, A) and a horizontal straight line
z = ¢ wWhere A and e are defined in terms of some arblitrary initlal con-
ditions B, Bo" and go, on the plane with rectangular coordinates (g, z)
where § 1s the horizontal and 2z 1is the vertical axis. By (1.4), we
always have o(Bo, A) s ¢ . o(Bo, &) = ¢ 1f and only if By = O (since
ho >0) . If Bo # O , then on some interval containing B0 , the inequality
o(B, 84) < € holds. Now let us assume, that between the lines z = ¢ and
z = o(B, &) , points B, and B, exist such, that ofs,,A)=¢c, o(Bz,8) = ¢
and w(B, A) < ¢ for B, <B < B, . It 1s easily seen that, if the llne
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z ='¢ intersects the curve =z = o{g, A) at two distinct points g, and B8,
{1.e. ' (By,8) < 0 and o' {B., 4} > 0} , then the Routh eguation has a peri-
odie solution, and its period

B, F—
_o\ _Vi@ads 2.1)
T”zéx Ve—o(3 &) (

assumes all possidle values between 8, and g, . By (1.3} is slso a peri-
odlc function of time £ , and has the same period 7T . We shall call the
above motion nutational.

In case of nutatlonal motion, function (g, A) has at least one minimum
in the interval B,< B8 < B, . The nutation will be called proper nutation
if #{8, ) has exactly one minimum. In this case the minimum point will be
called the center of nutation, and denoted by 8, . Obviously, o'(8,,8) = O,
hence B = B,, while 4 = ¢{8,}a will be a precession corresponding to the
center of nutation.

Let us now represent (1.3) and (1.4), as
«=[CR—CENA+CBIA—PCa
RB)B*+ 96, A)—o (B, M)l =v=e—9(B,, A)
We should note that the limits g, and 8, of variation of g are roots
of Equation ?@B,A) —@@B, A) =2 (2.3)

while the period 7 1s given by (2.1), in whieh e ~ (g, o) is replaced by
vV—[ef{g, A) — o{B,, 8}] . Let us now determine the increment of the vector
a = {@1s «»+» ag) during one period of nutation. Integrating (2.2} with
respect to ¢ and replacing the variable ¢ by g8 , we find

8, P7eY
e 2§ VEBICE®) -CBNA 45 pp RY.

(2.2)

Vvi-{9(R.8)— (B, 8)]
since the integral of g*(0e¢ over one complete pericd, vanishes.
Mean increment of vector g per one period
By -
Sa . 20 _VeR@EICE—CPBINA ‘
e ¢- 2 S e + d C A 204
T = Té‘ Vo196, A9, o1 T ¢ 6 24

The center g, of nutation is & root of {1.5) and depends only on the
cholce of A . Integral in {(2.4) depends on & .and ¢ . Let us denote
1t by ®(v®, A) . Then we can represent (2.4) as

a) = @ (¥?, A) +C (B, (A)A (2.5)
An approximate expression for ®(+?, 2) for small v &nd fixed A will
bergiven later, while now we shall consider the stability of precession.

3. PFrom (1.5} it follows that, for the precession B8 = 8o, a'= (ol ,
the curve & = ¢(B, A) has a horizontal tangent at the polnt B =gy . If,
at the same time

9" (B, A) >0, ror  (Cy''AA) + 200, >0 (3.1)
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is fulfilled (i.e. if B¢ 1s the minimum point of (8, 4)), then the preces-
slon is stable in g and o . This easily follows from the assumption of
continulty of a,,, ¢,, » and [ and of their derivatives as functions of

8 , and from the conditions {1.5) and {3.1). If o"{8, A) < O , then the
precesslon is unstable. The case w"(eo, A) = O shall not be considered.

Let us now assume that Bo and A satisfy (1.5) and (3.1). Then, the
corresponding precession 1s stable in g8 and g+, although as a rule, it is
not stable in g . The latter follows from (2.5). Below we shall show, that
®(\v*, A) differs, as a rule, from the null-vector, hence some of its terms
are different from zero. This means that the value of the corresponding
coordinate ¢, departs systematically from 1ts precessional value. Later we
shall obtain a quantitative estimate of this 1instability for various types
of perturbations, while now we shall give some examples of application of
Formulas (1.5} and {3.1}.

4, Examp1les . Let us consider a gyroscope on gimbals with a ver-
tical axls of the outer frame. We shall also consider gyroscopes with inter-
secting or crossing frame axes, where the center of gravity of the gyroscope
is displaced downward along the axls of the rotor. We shall denote by a,
the angle of rotation of the outer frame, o, will be the angle of rotation
of the rotor and B will be the angle of rotation of the inner frame. We
have N{p) = mgt sin g where m 1s the mass of the rotor with the inner
frame, and £ 1s the dlsplacement of the combined center of gravity of the

rotor and the inner frame, along the axis of the rotor. Kinetic energy of
the gyroscope 1s glven by

2T = M1 (B)ar'? 4 J (o + o3 8in B)* — 20, BN (B) - IB*
M, (B) = py + g, cos 2B — r, sin 2f — s, cos B, Ny (B) = D, cosp -+ K, sin f

Here Py, ¢y, Ty, 8, Dy, X; and I are various moments of inertia (axial
and centrifugalj of the frames, rotor and their linear combinations, while

J 1s the axial moment of the rotor. For heavy gyroscope on gimbals r =8,=0,
for a gyroscope with intersecting axes e,= 0 , while for the gyroscope in
which the combined center of gravity of the rotor and the lnner frame is not
displaced with respect to the axis of the rotation of the inner ring, we

have £ = 0O ,

First integrals of motion have the form
A= My B)ar’ + J (a2’ + a1"sin B) sin — N1 (B) B
Hence Ay =1J (ay 4 oy sin By = JQ (M (B)>0)
ay = M; () + Jsin*B, ay = ay = Jsinf, a=J, gy=— N, B ay=0,6=1
We assume that #,(g) > O for all values of 8 . We easlly obtain

—— A. si Ag2
9B, B) =(CA, A) -+ 21T (B) = — 1 M?(f)m L+ S| omgisin®

Disregarding the uninteresting case (O = O , we shall assume 0 # O . Let
us introduce the dimensionless parameters

2mgl ay’ A Ay ! ! N .
}L:“""—JQQ s (1)="'—Q y =—'A2, P'_——] N q-—-—f s I‘——‘“‘J y s
D
D = -']}“ 5 K: T
and functions

M (B):Ml‘;—@l:p 4-gcos23 —rsin23 —zscos3

N(B):M—}@*:Dcos&%‘l\’sing
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Then, we shall have
LA Ay
o &) =se |14 S5t | ying]

In the following, instead of the minimum of o8, A), we shall try to
obtain the minimum of

sin 3 — A)? .
vi@ ) =R | psing (&.1)
where
A My(B)ay +JQsinB— N, s . ]
S M@e 0B MBF g g - gL
Ccnsequently, 1f the initial condition 1s such that pgo' = O , we have
A = sinf, + Mw, 4.2)

Differentiating (4.1), we obtain

. o Apnr
TSR e VL ST I

Replacing B with 8, , taking (4.2) into account and equating the result-
ing expression to zero, we obtain the equation for w, , the angular velocity
of precession of the outer frame. We have

U — 2wy cos Py — Mol =0 4.3)
This quadratic equation has real roots, if
cos? fig + uM,y cos B, > 0 (4.4)
For a heavy gyroscope (r = 8 = 0), we have
My = — 4q sin By cos By

hence (4.3) is satisfied at any value of ws , If 8o % #n (existence of
arbitrary precessions of a heavy gyroscope with folded frames). We have
. A)._‘Zcos?{s __ 2(sinB—A)sinB 4(sinB — A)cos BM' (3)
VR A =) M) 730
(sinB— AP M” (§) (sinB— AP [M (B)]* .
T @ . Tl ) —psinB
Assuming that B = 8o in ¥“(g, A} , utilizing the relation (4.2) and

replacing according to (4.3) 2wecos 8, by u cos Bo— Mo ‘we?, we obtailn the
following condition of stability

IM1 (cos? By -+ p My cos By + [(2w, — p) sin By — My '@ ] >0 (4.5)
while the condition that the precession g = Bo, w = Wy , 18 unstable, 1s
2My7Y (cos®By - p My cos By) + [(20, — p) sin By — Mol <0 (4.6)
from which we see that stability is independent of ¥(g) .
Let us mention few particular cases.
1} Since My> 0, by (4.4) the condition (4.5) is fulfilled if
(2@y — p) sin By — My 0k > 0
This sufficlent condition of stability was obtained by Sinitsin [1].
2) For a heavy gyroscope we have

My=p 4 qeos 2B, = (p + ¢) — 2¢sin? By, My = —4q sin B, cos B,
My = — 4qcos 2,
Amsuming 8o ¥ + #n we find from {4.3) that p = 2w,— %g 38in Bowe? . Sub-

stituting this into (4.5), multiplying the result by M, and dividing 1t by
2 cos®gy , we shall obtain the condition of stability of precession of a
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heavy gyroscope which was previously found by Skimel' [2]. In our notation

it has the form
1 — 8gwgsin By + 290 (p + ¢ -+ 6g sin? Bg) >0
For Bo= %+ %m we have
My=p—q My=—4qcosfPysinBy =0, M) =4q

Here wo, }s arbitrary. The condition of stability :(2wo— p) — 4quwe2> O
(+ sign for g = + tF , — 8ign for Bo= — #n) was found previously by Rumian-
tsev (3] and Magnus L[4].

3) If 2r + s # 0, then M'(+ #n) # O . Assuming the last condition
fulfilled we find from (4.3) that, when 8o = + #m ,then wo= O . Hence the
precession B, = %+ #n , we= O 1is stable for  u > O , and unstable for

+ u< 0.

4) Let Bo be such, that N,’= 0 . Then wo= #u and the precession
B =R , w==%u 1s stable If W,*< O (assuming that p #0) , 1.e. if B,
i1s the maximum of N(g) .

5) Let p =0 (gyroblock i1s in static equilibrium with respect to its
axis of rotation). Then, one of the roots of (4.3) 1is equal to zero: we= O.
Frgm (4.5) we find that the precession g = Bo ,» Wo= O 1s stable for
Bo# ¥ .

In the above samples we have considered the stabllity with respect to
angular velocities of the rotor, of the outer and inner frame and with
respect to the angle of rotation of the inner frame. We know that even the
precession of the example (5) is unstable with respect to the angle of rota-
tion of the outer frame. Magnus type time drift). Let us now return to
the quantitative estimate of the mean drift of a4, per one period of nuta-
tional oscillation, defined by (2.5).

5. Let B, and A be such, that the conditions (1.5) and (3.1) are
satisfied. Then, for sufficiently small |[g5| , the initial conditions

B=8 o« =Co(A—Bray), B =0
result in a proper nutatlion with 1ts center at g, . Let us find the first
term of the expansion of ®(v*, A) in powers of +?. To do this, we shall
introduce in the. integrals (2.1) and (2.4) a new variable of integration u,

assuming that 8 — B (u) = Yy (By + By) + Yo (Bs — By) sinu
where B, and B, are roots of (2.3).

In the following we shall denote by 0(v) and 0(v, u) functions (vectors
or matrices the components of which are functions) defined and uniformly
bounded -on the interval |v| < & or in the rectangle |v| < & ,|ul=s n ,
respectively, where & > O 1is a sufficlently small number.

Let us represent (2.3) in the form
Ya @’ (B — Bo)® + @0’ (B — Bo)® + K (B) (B — Bo)* = +*

where k(s) 1s a function bounded in the vicinity of the point g = g5 .
Then, we easily find

Br=Bo—c|v|+ dv? 4 v30 (v) 92\, F g0
Ba =Bo +c|v] 4 dv: +v0 (v) (=) 1= ~30F) G
and
B =P +c|v| sinu -+ dv? + v30 (v, u) (5.2)
Consequently, we have for an arbitrary function s(g)
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fFB W) =fo+ fo'c|visinu + (dfy’ + 'p ¢y’ sin® upv® + v30 (v, u) (5.3)

By (1.5) and (2.3) we can show, that for the function o(8, 4) ,

— (o A)— 9 (Bos A)] = [1+

from which

Iv |sinu + v20 (v, u)] vicos?u

follows.

After the change of variable in (2.1) and (2.4), new integrand functions
will, utilizing (5.3) for Vh{g) and (cg) and (5.4) for o{(g, A) , be in the
integral {(2.1) B:—B |vlcosu Vh

Zlv] V[VS—'W'+‘¢0

= {c + v*0 (v))[VE—Hv}c(z:}"E — 6‘?’; )sinu—{—vz()(v, u)]

and in the integral (2.4)

Bl LS e ) = (e 4 VO () Il Vi Coesinu +
2| L300 7 hy — %7 \ gin?
v [CC"(:ZVE &po")s“‘ m -+

4 Vh—o (dCQ' -+ —c;- €y sin? u)} + V30 (v, u)}

Since the integral of sinu , sin®y and 1 1is, over the interval
— %7 su < %7, equal to O, #r and n , respectively, we can easily
obtain, utilizing (5.1},

;:f - v20 (;’)

1 0,0 ) i (8500 e — S5+
+v0 (v) == hofpa,, )’ (%—?—) AVE V30 (v) (5.5)

It can also be easily shown, that the last term can be replaced by
vo(v). Hence, we have

© (v, ) = 5 (5 ) A+ 0 (v)= B2 (55) A+ B0 (o)

Here 8o 18 the rate of nutatlion at the instant of crossing the center
of nutation. By (2.5), we have

(@ = Cod + 5 Be? (£5)) A+ 840(30) (5.6)

Let us use (5.6) to find the drift of the external frame of the gyroscope
in static equilibrium with respect to 1ts axis {£ = u = 0) . In this case
we have the precession B = By , we= O . Using the notation of Section &
we find, by (5.6),
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{ay"y =
- . I[2(p-——q)sm[30——()r+ssmﬁn)cosﬂo]—JNO(K—i—Nosint) .4 .
= —ho 3JQM, cos? B + B0 ()
When 7 =8 =D = Kk = O, we have the known Magnus approximate formula
for the drift of external frame.

6. Let g, and the vector AW satisfy the conditions (1.5) and (3.1).
Then the stable precession f§ = L@ _‘z_- a® = (B )ADM  exists. Let g,
and A®@ be an arbitrary number and vector, respectlvély, such, that |B2—B1l
and |A® — A(l)l are sufficlently small, and let g, be also sufficiently
small. Then the motlon with initial conditions g, , A and B, will be
a proper nutation, the center of which we shall denote by g, . The rate
Bo of this nutation at the instant of crossing the center of nutation, can

f d f .
b Tound O 8o = h(By) B 4 @ (B, A7) — @ (Bo, A)

and 1t can be shown that P;? 1s a second order infinitesimal with respect
to By} + By — Byf + | A® — AW,
Let us now find the vector of mean deviation (a' — a1'>. By (5.6) we have

(& — ay = CoA(2)'*—C(B )A(l) 4= B 2 ( hC” ) A(‘z) + B0 (B0) (6.1)

Let us estimate C,A® — C (B,) AW, Putting § = A® — AWM, we
shall note that
(B, A®) = (CA®, A®) + 211 (B) = (C (AW + ), AW+ E) +
+ 21 (B) = ¢ (B, AW) + 2 (CA®, E) + (CE, )

Hence, by (1.5) we can find the center of nutation using

Q" (Boy AW) + 2(Cy'AW, E) + (Cy'E, &) =0
For small |g| this equation has, by virtue of ¢’ (f;, AW) =0 a solu-
tion

2(C° (By) AD, ‘
Bo=ﬁx—%)+1§|20(lg|)

Hence,

CoA® — C (B)) A = (C (B) + €' (By) (Br —Bo) + [EP O (|E) (AP + )
—C A" = C @ g+ HE BT 0 a1 2 po 5

From thls we see, Iﬁz — ﬁll and ﬂg are of the same order
of magnitude, then C A® — (C (B;)AD); will be the principal term of (5.7)

and we shall have

@ — a0y~ ¢ (g + LEBLETD 07 g, 40



A class of motions of conservative systems 753

Ir £ =0, 1.e. A® = AW B, =P, (center of nutation coincides with
the initial point B8,;), then the following approximate formula can be used:

2 .y

(@ — 'y ~ v (ML

”
h(B) \ 97 /a=

(v = h (B B+ 5 9" (81 AD) (B — B?)

A(l)
B

Ll
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